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a b s t r a c t

In diverse media the characteristics of mass and heat transfer may undergo spontaneous
and abrupt changes in time and space. This can lead to the formation of regions with
strongly reduced transport, so called transport barriers (TB). The presence of interfaces
between regions with qualitatively and quantitatively different transport characteristics
impose severe requirements to methods and numerical schemes used by solving of trans-
port equations. In particular the assumptions made in standard methods about the solution
behavior by representing its derivatives fail in points where the transport changes
abruptly. The situation is complicated further by the fact that neither the formation time
nor the positions of interfaces are known a priori. A numerical approach, operating reliably
under such conditions, is proposed. It is based on the introduction of a new dependent var-
iable related to the variation after one time step of the original one integrated over the vol-
ume. In the vicinity of any grid knot the resulting differential equation is approximated by
a second order ordinary differential equation with constant coefficients. Exact analytical
solutions of these equations are conjugated between knots by demanding the continuity
of the total solution and its first derivative. As an example the heat transfer in media with
heat conductivity decreasing abruptly when the temperature e-folding length exceeds a
critical value is considered. The formation of TB both at a heating power above the critical
level and caused with radiation energy losses non-linearly dependent on the temperature
is modeled.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Transport characteristics in diverse media may undergo spontaneous and abrupt changes in time and space. In solid mat-
ter this happens by phase transitions [1]. In magnetized fusion plasmas the transport of charged particles and energy across
closed magnetic surfaces is often strongly enhanced by diverse micro-instabilities [2]. These instabilities may be, however,
spontaneously suppressed, e.g. if the gradients of plasma parameters approach some critical values. As a result regions with
strongly reduced transport, so called transport barriers (TB), arise. In fusion devices of tokamak and stellarator types TB exist
both at the plasma edge [3] and in the plasma interior [4].

The presence of interfaces between regions with strongly different transport characteristics impose severe requirements
to methods and numerical schemes used for solving of transport equations. In approaches based on the discretization of
space derivatives, e.g. finite difference, finite volume and finite element methods [5,6], some assumptions are made a priory
about the behavior of the solution in order to represent derivatives through the solution values in neighboring points. Nor-
mally quadratic or higher order splines are adopted. This is, however, doubtful in points where the transport changes
abruptly and a significant alteration in the solution gradient takes place. The situation is complicated further by the fact that
. All rights reserved.
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we do not know in advance both when and where TB will be formatted. Since analytical approaches, see, e.g. Ref. [7], are
meaningful for a qualitative analysis of simplified problems only, proper numerical methods have to be developed.

In this paper we present a method which allows to overcome difficulties outlined above. It has been developed on the
basis of approaches elaborated previously in Refs. [8,9] but allows to operate with arbitrarily small time steps. This method
for numerical integration of parabolic equations for variables dependent on time and one space coordinate has been vali-
dated in the framework of activities of the European Task Force on Integrated Tokamak Modeling [10]. It includes two prin-
cipal steps:

(i) Change over to a new dependent variable related to the variation after one time step of the original variable integrated
over the volume; on the contrary to the original variable the new one has the first spatial derivative continuous every-
where, even if the transport characteristics are discontinuous.

(ii) In the vicinity of each grid knot the second order ordinary differential equation (ODE), which governs the new variable,
is approximated by ODEs with constant coefficients; exact analytical solutions of these equations are conjugated by
requiring the continuity of the total solution and its first spatial derivative; no assumptions on the solution behavior
are made by assessing derivatives.

As an example the heat transfer in a medium with heat conductivity decreasing abruptly when the temperature e-folding
length exceeds a critical level is considered. First, the situation with a fixed boundary temperature and heating power above
the critical level is modeled. It is demonstrated that the final position of the TB interface with the region of high transport
depends on the initial conditions and relatively small time steps are needed to reproduce correctly the interface position in
the final steady state. Second, the generation of TB under subcritical heating due to radiation losses non-linearly dependent
on the temperature is simulated. The found TB phenomenology is reminiscent of observations on tokamak fusion devices.

2. Basic equations

We proceed from a one-dimensional transport equation in a cylindrical geometry for a variable z being a function of time t
and the radial coordinate r:
@z
@t
¼ Q � 1

r
@

@r
ðrqÞ ð1Þ
where Q is the density of heat sources and sinks. The heat flux density q has to be provided by a transport model and, in
particular, in the case of anomalous transport due to instabilities in hot fusion plasmas [2], it is generally a complex non-
linear function of z, dz=dr, and other parameters. In this paper we assume that q is given by the Fick’s law
q ¼ �jdz=dr ð2Þ
where the heat conduction j is a step-like function of the e-folding length Lz � �z=ðdz=drÞ:
jðLz P Lcr
z Þ ¼ j0; jðLz < Lcr

z Þ ¼ j1 � j0 ð3Þ
with j0 and j1 being continuous functions of parameters and a prescribed critical value of Lz; Lcr
z . For a fixed z the depen-

dence of q on dz=dr with constant j0; j1 is displayed in Fig. 1. One can see that in the range qmin 6 q 6 qmax two values of the
gradient dz=dr can be realized for the same flux density. This allows formation of an interface between regions with different
Fig. 1. The dependence of the flux density on the temperature gradient with a step-likely changing heat conduction.
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transport: in two neighboring space points with nearly the same z and q the medium can be in states with very differing
dz=dr.

In order to go further the partial time derivative is linearly approximated, @z=@t � ðz� z�Þ=s, where s is the time step and
z�ðrÞ the zðrÞ value at t � s; higher order Adams–Moulton schemes, see, e.g. [11], can be applied straightforwardly. Differ-
ently to the approach in Ref. [9] we operate here by using the variation of the variable z after one time step:
n ¼ z� z� ð4Þ
This allows to avoid terms becoming arbitrary large by s! 0 and, thus, to work with arbitrary small s. As next we proceed to
a volume integrated counterpart to n:
y ¼ 1
r2

Z r

0
nqdq ð5Þ
for which the following relationships are valid:
n ¼ r
dy
dr
þ 2y;

dn
dr
¼ r

d2y

dr2 þ 3
dy
dr

ð6Þ
Since both n and y are continuous, the latter has also a continuous first spatial derivative even if the transport character-
istics are discontinuous, conversely to the derivatives of z and n. By multiplying Eq. (1) by rdr and integrating from 0 to r, one
gets the following equation for y:
d2y

dr2 þ a
dy
dr
¼ by� f ð7Þ
where
a ¼ 3
r
; b ¼ 1

sj
; f ¼ 1

r
dz�

dr
þ 1

rj

Z r

0
Qrdr

� �
ð8Þ
The advantages of Eq. (7) compared to Eq. (1): (i) there are no derivatives of transport coefficients and, thus, no problems at
TB interfaces where dj=dr is infinite and (ii) the flux continuity is taken into account automatically.

Due to symmetry the first space derivative of all variables reduce to zero at the axis, r ¼ 0, and from the definition of dn=dr
we get here dy=dr ¼ 0. Therefore theoretically there is no problems with the second term on the left hand side of Eq. (7) with
the coefficient a becoming infinite at the axis. Nevertheless, for the numerical realization we transfer the boundary condition
from 0 to some finite rmin. For this reason we use the Taylor’s expansion in the range 0 6 r 6 rmin:
y � yðrminÞ þ ðr � rminÞ
dy
dr
ðrminÞ þ

ðr � rminÞ2

2
d2y

dr2 ðrminÞ
where d2y=dr2ðrminÞ can be excluded with the help of Eq. (7). This provides
dy
dr
ð0Þ � dy

dr
ðrminÞ � rmin bðrminÞyðrminÞ � aðrminÞ

dy
dr
ðrminÞ � f ðrminÞ

� �
and, by taking into account the definition of a, see Eqs. (8), the boundary condition dy=drð0Þ ¼ 0 results in:
bðrminÞyðrminÞ �
4

rmin

dy
dr
ðrminÞ � f ðrminÞ ð9Þ
At the outmost border of the calculation domain, r ¼ rmax, we assume most generally a boundary condition in the form
uzþ vdz=dr ¼ w. In Section 4 situations with a fixed value of either the solution itself or its e-folding length Lz are considered.
In the former case u ¼ 1; v ¼ 0 and w ¼ zðrmaxÞ and in the latter one u ¼ 1; v ¼ LzðrmaxÞ and w ¼ 0. The boundary condition
for the variable y can be obtained by using relations (6) where d2y=dr2 is again excluded with the help of Eq. (7). By taking
into account the definition of n, Eq. (4), one gets
2uþ vr
sj

� �
yþ ur

dy
dr
¼ vrf þw� uz� � v dz�

dr
ð10Þ
3. Approach to numerical solution

The present approach to solve Eq. (7) uses piecewise exact analytical solutions in the vicinity of grid knots. This method
differs from those proposed previously, see Refs. [8,9,12], by joining adjacent solutions not in the grid knots but between
them. This allows us to avoid in the knots discontinuity of the used approximations to the coefficients a, b and the free term
f, and, therefore, to guarantee the continuity of the solution, its first and second derivatives. Consider vicinities r�i 6 r 6 rþi ,
where r�i ¼ ðri þ ri�1Þ=2, of the grid knots ri¼1;...;n, with r1 ¼ rmin and rn ¼ rmax. Here a, b and f are approximated by their values
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in the knots, ai; bi and fi, respectively. Thus in any interval r�i 6 r 6 rþi Eq. (7) is approximated by a linear second order inho-
mogeneous ODE with constant coefficients. Its general solution is given by:
yiðrÞ � y r�i 6 r 6 rþi
� 	

¼ Ci;1yi;1ðrÞ þ Ci;2yi;2ðrÞ þ fi=bi ð11Þ
where the independent solutions of the homogeneous equation, yi;k¼1;2, are determined by the discriminant D ¼ a2
i =4þ bi. For

a and b from Eqs.(8) D is always positive and:
yi;k ¼ exp½ki;kðr � riÞ� ð12Þ
where
ki;k ¼ �
ai

2
� ð�1Þk

ffiffiffiffi
D
p

For the solution values in the grid knots, yi � yðriÞ, one has
yi ¼ Ci;1 þ Ci;2 þ fi=bi ð13Þ
At the interfaces of the knot vicinities, r ¼ r�i , we require the continuity of the solution and its first derivative. Thus, the fol-
lowing relationships are valid for 2 6 i 6 n� 1:
Ci�1;1yi�1;1;2 þ Ci�1;2yi�1;2;2 þ y0
i�1 ¼ Ci;1yi;1;1 þ Ci;2yi;2;1 þ y0

i

Ci�1;1yi�1;1;2ki�1;1 þ Ci�1;2yi�1;2;2ki�1;2 ¼ Ci;1yi;1;1ki;1 þ Ci;2yi;2;1ki;2

Ciþ1;1yiþ1;1;1 þ Ciþ1;2yiþ1;2;1 þ y0
iþ1 ¼ Ci;1yi;1;2 þ Ci;2yi;2;2 þ y0

i

Ciþ1;1yiþ1;1;1kiþ1;1 þ Ciþ1;2yiþ1;2;1kiþ1;2 ¼ Ci;1yi;1;2ki;1 þ Ci;2yi;2;2ki;2
where yi;k;m ¼ yi;k
riþrj

2

� �
with m ¼ 1;2 and j ¼ iþ ð�1Þm.

These relations and Eq. (13) applied in the knots i and i� 1 allow to exclude the coefficients Ci;1; Ci;2; Ci�1;1 and Ci�1;2 and,
after some cumbersome algebra, we get a recurrent relation between the solution values in neighboring grid points:
yi ¼ yi�1gi;1 þ yiþ1gi;2 þ vi ð14Þ
where
gi;m¼1;2 ¼
yj;l;l

yi;l;m

~gm;l �
yi;l;3�m

yi;m;l

~gl;l

 !

vi ¼
X

m¼1;2

ll

yi;m;m

yi;l;m

~gm;m � ~gl;m

 !
� fj

bj
gi;m

" #
with l ¼ 3�m; ~gk;m ¼
gk;m

g1;2g2;1�g1;1g2;2yi;1;1yi;2;2=yi;2;1=yi;1;2
,

gk;m ¼ �ð�1Þm
kj;m � ki;k � ½kj;l � ki;k�yj;l;l=yj;m;l

kj;1 � kj;2
and
lm ¼ �ð�1Þm fi=bi � fj=bj

yi;l;m

kj;m � kj;lyj;l;l=yj;m;l

kj;1 � kj;2
:

Relationships (14) and boundary conditions (9) and (10) can be used to find the solution values in all grid knots, yi¼1;...;n. It is
done in the same manner as in standard finite difference, finite volume or finite element methods, see, e.g. Ref. [6]. We briefly
review this procedure for completeness of our study. One guesses that there is a linear recurrent relationship
yi�1 ¼ di þ 1iyi ð15Þ
By substituting this into Eq. (14), we find the recurrent relations for the parameters d and 1:
diþ1 ¼ ðgi;1di þ viÞ=ð1� gi;11iÞ; 1iþ1 ¼ gi;2=ð1� gi;11iÞ
In order to start the recursion, d1 and 11 are determined from the boundary condition (9) where
dy=drðrminÞ � ðy2 � y1Þ=ðr2 � r1Þ is assumed. An error due to this estimate can be made arbitrary small by decreasing the grid
step h1 ¼ r2 � r1. With all d1;...;n and 11;...;n found, yn�1 and yn are determined from the relations:
yn�1 ¼ dn þ 1nyn; yn�1 ¼ /þ wyn
where the parameters / and w are obtained from the boundary condition (10) with dy=drðrmaxÞ � ðyn � yn�1Þ=ðrn � rn�1Þ. Fi-
nally, all yi are calculated by applying relation (15).

The main difference between the present approach and standard methods mentioned above is the way how the coeffi-
cients g and v are obtained. For example, a linear behavior of the solution between grid points is assumed in finite volume
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methods (FVM). In the present approach no assumptions are made and the exact analytical solutions are used. This differ-
ence is insignificant for equations with coefficients being smooth functions of r but is of very importance for those with step-
like coefficients. In such a case it is also essential to use exact relationships for the derivative of the variable y needed to
return to the original quantities n and z:
dy
dr
ðriÞ ¼

X2

m¼1

yj �
fj

bj

� �
yj;l;l

yi;l;m

~gk;lki;l �
yi;l;l

yi;m;l

~gl;lki;m

 !
þ ki;m lm

yi;l;l

yi;m;l

~gl;l � ll ~gl;m

 !" #
One has also to see the principal difference to approaches using other standard discretization techniques, e.g. by applying
splines with exponential basis functions. In the present method the basis is defined individually in the vicinity of each grid
knot and includes only two functions which are not arbitrary chosen but predetermined by the equation itself. In the case in
question of diffusion like equations these solutions have an exponential form (12). The present method can be, however,
straightforwardly generalized, see Ref. [8], for equations with negative discriminant D whose independent solutions are
products of exponential and trigonometric functions.

For non-linear transport problems, like those considered below, a converged solution Z has to be obtained for any time t.
This is done in an iterative procedure:
Zjþ1ðrÞ ¼ ZjðrÞ � ð1� AmixÞ þ zðrÞ � Amix
Here ZjðrÞ is the approximation to the solution after j iterations with Z1ðrÞ assumed equal to the converged solution at the
pervious time moment t � s; zðrÞ is calculated with yðrÞ found by solving Eq. (7) with a, b and f calculated by using ZjðrÞ. The
mixing coefficient Amix 6 1 is chosen to minimize the number of iterations needed for convergence. The latter is achieved if
the error
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

½zðriÞ � ZjðriÞ�2
Xn

i¼1

½zðriÞ þ ZjðriÞ�2
,vuut
is reduced to a small fraction of Amix assumed equal to 10�5 in the present study.

4. Modeling of transport barrier formation

4.1. Barrier by supercritical heating

Assume a heat source density Q constant over the whole radius and prescribe the value zðrmaxÞ as the boundary condition.
In a steady state where @z=@t ¼ 0 one gets q ¼ �jdz=dr ¼ Qr=2. Thus Lz ¼ 1 at r ¼ 0 and in some region near the axis the
medium is always in the state of strong transport with j ¼ j0. Lz decreases by approaching to the boundary due to the de-
crease of both z and dz=dr < 0, and at some position a transition to the low transport state with j ¼ j1 is possible. By assum-
ing that this happens at r ¼ r	, one can find the corresponding stationary profile of the dimensionless variable
H ¼ zj0=ðQr2

maxÞ [9]:
Hð0 6 q 6 q	Þ ¼ Hðq	Þ þ ðq2
	 � q2Þ=4

Hðq	 6 q 6 1Þ ¼ Hðq	Þ þ ðq2
	 � q2Þ=ð4vÞ
where q ¼ r=rmax; q	 ¼ r	=rmax; Hðq	Þ ¼ ð1� q2
	 Þ=ð4vÞ þH1 with v ¼ j1=j0 and H1 ¼ zðrmaxÞj0=ðQr2

maxÞ. For the existence of
TB the heat flux density at the interface between regions of high and low transport has to be in the range:
qmin � j1zðr	Þ=Lcr
z 6 qðr	Þ ¼ Qr	=2 6 qmax � j0zðr	Þ=Lcr

z

By taking into account that zðr	Þ ¼ Hðq	ÞQr2
max=j0, this conditions can be rewritten in the form:
vHðq	Þ 6 q	=ð2nÞ 6 Hðq	Þ
where n ¼ rmax=Lcr
z . With the requirement 0 6 q	 6 1 these inequalities define the interval of possible q	:
qmin
	 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n2 þ 1þ 4vH1

q
� 1=n 6 q	 6 qmax

	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=n2 þ 1þ 4vH1

q
� v=n
The condition qmin
	 6 1 guarantees that the interface is located inside the medium and defines the minimum level of the

heating power density necessary for the existence of TB, Q P 2j1zðrmaxÞ=ðrmaxLcr
T Þ. The latter can be written as a constraint

on H1 : H1 6 ð2vnÞ�1.
The analytical consideration above does not make it possible to find the steady state position q	 of the interface between

regions with different transport characteristics. In order to reveal factors determining q	, Eq. (1) has been solved numerically
by the method presented above with the initial condition Hð0;qÞ ¼ H1 þ að1� q2Þ=ð4vÞ. By increasing the factor a, we pro-
gress from flat initial profiles with low total thermal energy towards peaked ones with higher energy content. Fig. 2 dem-
onstrates stationary profiles found numerically at t1 ¼ 10r2

max=j0 with s ¼ 10�3t1, on an equidistant spatial grid with
n ¼ 501, for the parameters v ¼ 0:1; n ¼ 1 and H1 ¼ 0:01 ensuring the existence of TB in the final steady state. Analytical



Fig. 2. Final steady state temperature profiles calculated numerically (solid lines) for different initial conditions and found analytically (thick bars) with the
positions of the TB interface, q	 , determined from the numerical solutions.
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solutions with the TB interfaces located at the same q	 as those predicted by numerical solutions are shown by thick bars.
One can see good agreement between analytical and numerical results and that the whole range qmin

	 6 q	 6 qmax
	 is realized

by changing the initial condition. For a P 0:92 the final state with the broadest TB, i.e., q	 ¼ qmin
	 , is realized only. Converged

solutions at any time step have been obtained with Amix ¼ 1 after 1–2 iterations.
Even if the initial conditions are fixed, different final profiles can be obtained due to deficits in the numerical realization.

Fig. 3 displays the H-profiles in final stationary states found with the same flat initial temperature profiles, Hð0;qÞ ¼ H1, for
v; n and H1 as above but with different time steps s. One can see that the profiles coincide with that shown for a ¼ 0 in Fig. 2
only if s is below a certain value. For larger time steps the solver passes by the correct solution and provides a final state with
a too broad TB. This example shows that the possibility to calculate with arbitrary small time step is an important advantage
Fig. 3. Final steady state temperature profiles computed with different time steps s.
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of the present approach operating with the alteration of the solution during the time step but not with the solution itself as it
has been done before [8,9]. One may say that calculations with a small time step is not a problem for standard approaches,
e.g. finite volume method (FVM) [6]. This is, nevertheless, not the case in the situation in question with discontinuous trans-
port characteristics allowing spontaneous formation of transport barriers: calculations with a standard FVM did not provide
converged solutions for any Amix.

By concluding this section we compare the results above with those obtained by the method described in Ref. [13], which
has been also applied to non-linear transport models allowing bifurcations like the formation of TB. Independently of initial
conditions and time step this method provides final stationary state with the TB interface at q	 ¼ qmax

	 . In Ref. [13] the solu-
tion is found by going from the outmost boundary, q ¼ 1. If in the point ri�1 two solutions are possible, see Fig. 1, the one
closest to that in ri has been selected. This constraint is, probably, too restrictive since it allows transitions between different
transport regimes only at q ¼ qmin and q ¼ qmax.

4.2. Generation of transport barriers by radiation energy losses

One of paradoxical phenomena in media with non-linear transport properties is the transition to states with reduced
transport triggered by additional energy losses dependent in a complex way on the media properties. An example of such
a behavior is the formation of a region with reduced heat transport at the plasma edge in tokamak devices by a deliberate
seeding of impurities [14]. The suppression of turbulence with increasing electric charge of impurity ions was discussed pre-
viously as a possible mechanism of this phenomenon [14].

Here we persevere with the heat conduction law given by Eq. (3) but take into account the radiation energy losses due to
excitation of impurity ions by plasma electrons. The volumetric density R of these losses depends in a complex way on the
electron temperature z. Roughly [14]:
Fig. 4.
(dash-d
R ¼ R0 exp �
ffiffiffiffiffi
z1

z

r
�

ffiffiffiffiffi
z
z2

r� �2" #
ð16Þ
Here R0 is proportional to the density of impurity; for temperatures lower than z1 of several electronvolts only few electrons
have enough energy to excite impurity particles; in the range z1 6 z 6 z2 the latter are in ‘‘radiant” charge states which can
be easily excited; however, impurity ions are too strongly stripped and can not produce intensive radiation if z > z2. For often
used neon impurity z2 � 50—100 eV and, since a typical temperature in the plasma core is of several keV, the radiation losses
are localized at the very plasma edge.

Begin with the case without radiation and a heating power smaller than the critical one for the TB formation, so that
j ¼ j0 in the whole plasma. With increasing impurity density and radiation losses the temperature at the plasma edge re-
duces. At the same time the temperature gradient at the boundary between the core and peripheral layer, where radiation is
mainly localized, is maintained roughly the same since the heat flux density towards the edge is fixed by heating power.
Therefore with increasing R0 one can expect an increase of Lz at this boundary and the formation of TB. This intuitive antic-
ipation is confirmed by the results of numerical solution of Eq. (1) where Q has been replaced by Q � R with constant Q and R
given by Eq. (16) where z1 ¼ 0:01Qr2

max=j0 and z2 ¼ 0:03Qr2
max=j0 were assumed. We fix Lz ¼ 1:01Lcr

z as the boundary condi-
tion at r ¼ rmax to ensure that there is no TB without impurity radiation. As the initial condition the z-profile in the steady
state with R0 ¼ 0 has been chosen. Fig. 4(a) shows the final stationary profiles HðqÞ computed for different ratio l ¼ R0=Q
a b

Final steady state temperature profiles computed for different levels of radiation losses: (a) l ¼ 0 (solid curve), l ¼ 2 (long dashed curve), l ¼ 3
otted curve), l ¼ 7 (short dashed curve) and l ¼ 8 (dotted curve); (b) detail structure of TB for l ¼ 3 (dashed curve) and l ¼ 7 (solid curve).



Fig. 5. Time evolution of the temperature profile computed with l linearly increasing in time, l ¼ 10t=t1 .
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with v ¼ 0:1 and n ¼ 10. If l is small enough radiation losses lead to trivial reduction of the temperature everywhere. How-
ever, TB arises at the plasma edge if l is increased up to 3. It becomes even broader if l is risen further to 7. In this case
roughly 200–250 iterations with Amix ¼ 0:1 were necessary to get converged solutions with n ¼ 501 and s ¼ 10�3.

For l > 7 the TB starts to narrow and thermal collapse happens at l ¼ 8: in the whole plasma the temperature drops to a
very low level with H � 0:0032 for 0 6 q 6 0:86. This value corresponds to the smallest one of two temperatures at which
the exact local heat balance Q ¼ R is satisfied. This state is stable with respect to thermal instability [14]: any small increase
(decrease) of the temperature leads to increase (decrease) of radiation losses and fluctuations are suppressed. The second
stationary state with Q ¼ R corresponds to z � 0:094 and is thermally unstable.

In Fig. 4(b) stationary HðqÞ-profiles for l ¼ 3 and 7 are shown in the edge region, 0:9 6 q 6 1. For l ¼ 3 the temperature
profile corresponds well to an intuitively expected one: there is a region attached to the boundary q ¼ 1 where the temper-
ature gradient and heat transport with conduction are strongly reduced by radiation losses. The temperature gradient in-
creases by moving deeper into the plasma and, because of the decreased temperature, Lz is decreasing below its critical
level and a region of reduced transport is formatted. For l ¼ 7 the temperature profile shape is more complex and a double
TB structure exists.

Finally, in Fig. 5 we demonstrate the time evolution of the temperature profile in the case of l linearly increasing in time,
l ¼ 10t=t1. One can see that TB arises also in this case, however, it does not grow up to the same level as in the previous
example with an instantaneous increase of l because a double TB does not develop.

5. Conclusion

A numerical approach to solve transport equations with transport characteristics, changing step-likely with the e-folding
length, is proposed. It is based on the introduction of a new dependent variable related to the alteration after one time step of
the original dependent variable integrated over the volume. Numerical solution of the differential equation for the new var-
iable is found by conjugating exact analytical solutions valid in the vicinity of grid knots. This procedure does not require a
priory assumptions on the solution behavior by assessing its derivatives. As an example the formation of transport barriers
with heating power exceeding the critical level and under subcritical conditions but with radiation losses dependent non-
linearly on the temperature is simulated.
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